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described as an oxycarbene ligand3 which couples to a methyl 
(in 5) or acetone carbon atom (in 4) to give 6, which then re­
arranges to 3. If 4 is an intermediate, the coupling reaction 
must be rather specific and Ta(r/5-C5Me5)(r/2-acetone)2 cannot 
form reversibly to any significant extent. 

The course of the reaction of 2 with H2 may prove relevant 
to the question of whether 4 or 5 is formed. At 25 0 C in benzene 
under 40 psi of H2, 2 smoothly and quantitatively is converted 
into 7 in 4 h (eq 3).17 The fact that no methane is formed 
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suggests that the Ta-C (acetone) bond is more readily cleaved 
by H2. Therefore, it may also react more rapidly with CO to 
give 5 rather than 4. We have not yet isolated 7 since it de­
composes (apparently bimolecular) in solutions more con­
centrated than ~0.02 M18 to give methane and unidentified 
organometallic products. 

This model study suggests that reductive coupling of CO 
with H2 to give two carbon products might plausibly proceed 
via CO insertion into the metal-carbon bond of an ^-form­
aldehyde ligand9 or by coupling a formyl and an ^-formal­
dehyde ligand. We are attempting to prepare r/2-formaldehyde 
analogues of 2 in order to see if such expectations are real­
istic. 
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Coupling of Acetylenes Held Proximate to a Metal: 
Alkyne-Alkyne Interactions in 
cis- Phosphinoacety lene Complexes 

Sir: 

Unusual chemical reactivity, particularly toward inter- and 
intramolecular coupling, is often associated with aromatic 
diacetylenes such as 1 in which the two alkynyl groups are held 
rigidly adjacent to one another.1-2 During our studies on the 
synthetic utility of coordinated heteroatom functionalized 
acetylenes,3 we discovered a novel method to achieve the 
proximity of alkyne triple bonds necessary to promote coupling. 
Thus in cis transition metal complexes of phosphorus coordi­
nated alkynyl phosphines, for example 2 (M = Pd, Pt; X = Cl; 
R = R ' = Ph), the sterically less demanding - C = C R ' groups 
are forced into a configuration facilitating alkyne-alkyne in­
teraction. We have established the nature of these unusual 
alkyne-alkyne contacts via a single-crystal X-ray analysis of 

-R' / V- -v. 
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Figure 1. The molecular structure of ci's-PtCl2(Ph2PC=CPh)y2CH3CN 
drawn to illustrate the interaction between alkynyl groups. Ellipsoids 
represent 30% probability. Solvent of crystallisation is not shown. 

m-PtCl2(Ph2PC=CPh)2 and confirmed that thermal con­
version of 2 (R = R' = Ph; M = Pt; X = Cl, Br, NCS; M = Pd; 
X = Cl) into derivatives of the new unsymmetrical diphosphine 
ligand, l-phenyl-2,3-bis(diphenylphosphino)naphthalene (3), 
is a facile, high-yield process. The concept of promoting al-
kyne-alkyne interactions via heteroatom coordination to a 
metal has potential not only for the synthesis of unsymmetrical 
diphosphines with an aromatic backbone4 and their complexes 
but also as a general strategy for acetylene elaboration. 

The cis square-planar complex 2 (M = Pt; R = R' = Ph; X 
= Cl)7 is best prepared (~80%) by reaction of (COD)PtCl2 
(COD = 1,5-cyclooctadiene) (0.75 g) and Ph2PC=CPh (1.5 
g) in benzene (30 mL) at room temperature. For 2 (M = Pd; 
X = Cl; R = R' = Ph)7 direct reaction at 25 °XLof 
Ph2PC=CPh (1.5 g) with a solution obtained by dissolving 
PdCl2 (0.88 g) in hot CH3CN (50 mL) gives excellent yields 
(>80%).8 Crystals of a bis(acetonitrile) solvate of 2 (M = Pt; 
R = R' = Ph; X = Cl) are monoclinic, space group P2\/c, with 
a = 11.604(2), fc = 18.416 (5), c = 19.344 (3) A;/3 = 98.63 
(I)0 ; Z = 4; pc = 1.496 g cm"3; /u(Mo Ka) = 38.53 crrr1; 
F(OOO) = 1824. The structure analysis and refinement9 were 
based on the intensities of 3716 observed (/ ^ 3(i(/)) count-
ermeasured reflections for a spherical crystal of diameter 0.25 
± 0.015 mm sealed in a glass capillary. The present R value 
is 0.031. AnORTEP Il plot (Figure 1) illustrates the nature of 
the interaction between the alkyne units. In the square-planar 
complex, the phenyl groups on phosphorus are directed away 
from the polyhedral edge defined by the two phosphorus atoms, 
while the linear alkynyl moieties "cross" one another. The close 
approach of the a-carbon atoms of the phenylethynyl groups 
is shown by the C(l)-C(9) distance (3.110 (10) A) which is 
considerably less than twice the van der Waals radius of carbon 
(1.65-1.70 A). For comparison we calculate a distance of 
—2.82 A between the a-acetylenic carbon atoms in o-bis-
(phenylethynyl)benzene, a molecule also activated toward 
alkynyl coupling.1 A significant deviation of the acetylenes 
from linearity (P(l)-C(l)-C(2), 172.7 (3); P(2)-C(9)-C(10), 
173.2 (4)°) accompanies the alkynyl group contacts. Seen in 
the light of the molecular structure, it is not surprising that, 
on refluxing in benzene overnight or in toluene (2 h), 2(M = 
Pt; R = R'= Ph; X = Cl) is converted in high yield (80%) into 
an isomeric complex 4 exhibiting no KC=C) bands in the IR 
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Figure 2. A perspective ORTEP II drawing of the structure of 1-phenyl-
2,3-bis(diphenylphosphino)naphthalene. Ellipsoids are drawn at the level 
of 30% probability. 

but retaining cis stereochemistry (KPt-Cl) 317 (m), 274 (m) 
cm-1) and with two nonequivalent phosphorus atoms (31P 
NMR (CDCl3, downfield from external 85% H3PO4): 5PA 44.2 
(yPA_]95Pt = 3499 Hz), <5pB 35.8 ppm (/pe-iisp, = 3570, JpA-pB 
= 7.8 Hz). Bromide and thiocyanate analogues 4 (M = Pt; R 
= R' = Ph; X = Br, NCS) were synthesized by metathesis or 
from 2 (X = Br, NCS) via thermolysis. The palladium complex 
2 (M = Pd; R = R' = Ph; X = Cl) could also be converted into 
4, albeit in a poorer yield (~60%) which we attribute to partial 
isomerization of 2 to an unreactive trans form. To distinguish 
the various structural possibilities for an unsymmetrical di­
phosphine formed via acetylene coupling, an X-ray analysis 
of the free ligand 3, disengaged from 4 (M = Pt; R = R' = Ph; 
X = Cl)1

10 was carried out. Crystals of 3 are triclinic, space 
group Fl, with a = 11.437 (13), b = 9.628 (12), c = 16.712 
(21) A; a = 82.31 (9), j3 = 119.08 (3), y = 110.03 (5)°; M = 
572.63; Z = 2; pc = 1.259, pm = 1.27 g cm"3; M(CU Ka) = 
14.98 cm-1. The structure was solved and refined9 using 1683 
observed reflections to R = 0.058. An ORTEP II plot (Figure 
2) shows that the ligand 3 is l-phenyl-2,3-bis(diphenyl-
phosphino)naphthalene, a rigid, chelating diphosphine with 
a planar aromatic backbone formed via coupling of the two 
a-carbon atoms of the phosphino alkynes together with attack 
by the /3 carbon of one alkyne on the ortho position of the 
phenyl ring on the second alkyne. It is interesting that in the 
free ligand the Ph2P groups adopt a configuration which 
minimizes lone pair-lone pair repulsions and steric interactions 
between phenyl substituents. Nevertheless, nonbonded re­
pulsions between PPh2 groups may account for some distortion 
of angles subtended at the phenyl substituents: P(I)-
C(17)-C(18), 125.8 (3); P(l)-C(23)-C(28), 125.7 (3), 
P(2)-C(35)-C(36), 126.8(3)°. 

The precise mechanism of thermal coupling (2 —• 4, R = R' 
= Ph) has not yet been established, but it is clear that the 
ability of the metal to hold the acetylenes proximate plays a 
major role in the activation process. The favorable confor­
mation in 2 (M = Pt; R = R' = Ph; X = Cl) is not restricted 
to -C=CPh groups. Indeed an X-ray analysis of 2 (M = Pd; 
R = Ph; R' = r-Bu; X = CNS) has shown that, even with bulky 
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substituents, the alkynyl groups are held adjacent." The 
analogy with bis(phenylethynyl)benzene] is given further 
credence by the conversion of 2 (M = Pt; R = R' = Ph; X = 
Cl) in moist, acidic chlorobenzene into the unsymmetrical 
diphosphine complex 5 in good yield, presumably via initial 
electrophilic attack at a /3-carbon atom. We are currently ex­
ploring the wider implications of these fascinating reac­
tions. 
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Barriers against Configurational Isomerization 
at Tetrahedral Nickel(II) 

Sir: 

Paramagnetic (d8), pseudotetrahedral1 nickel N4 chelates 
of type 1 are configurationally stable on the NMR time scale.2 

This surprising observation has been exploited for conforma­
tional analysis3 and for recognition of substituent rotations4 

in cases of central2'3 and axial2'4 chirality at nickel, ~23 
kcal/mol (453 K) of free activation enthalpy2 being required 
for transformation of 1 (R1 = CgHs) into its enantiomer 2. The 
C2 symmetry of these compounds may be easily recognized 
from projection formulae such as la and 2a, viewing 1 as the 
R configuration and 2 as the S in idealized tetrahedral coor­
dination from the right-hand side. As previously explained,2 

the more heavily substituted flanks of the chelate moieties were 
denoted as squares and the hydrogen sites as circles. 

Since very little is known about isomerization and substi­
tution mechanisms of open-shell, tetrahedral transition-metal 
complexes, a determination of the barrier against racemization 
(1 ^= 2) would be of obvious interest.5 Rather than trying to 
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resolve a racemic mixture, we chose to tackle this problem by 
the technique of chiral, nonracemizable anchor groups in 3. 
The required ligands were prepared from optically active 
(tf)-camphor6 in the usual way.7'8 In the isomer drawn as 3, 
the configuration at nickel9 was denoted by the central R in 
R RR. Inversion at the central metal will produce 4 with RSR 
configuration. Both of these diastereomers are chiral and of 
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la 

Ci symmetry, as is easily seen from projections 3a and 4a 
where the wedges indicate orientations of the isopropylidene 
bridges. The overall structure is fully (pseudo)tetrahedral 
between - 8 0 and +137 0 C in Cl2CD-CDCl2 or tetralin as 
shown by the paramagnetism10 and temperature-independent 
reduced shifts.1' 

The interconversion of 3 and 4 was measured by integration 
of the two NMR signals for the two pairs of symmetry-related 
p-hydrogen atoms12 of 3 (phenyl groups a in 3a), as well as by 
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